

GLECHOMANOLIDES AND EUDESMANOLIDES FROM *SMYRNium* *PERFOLIATUM*

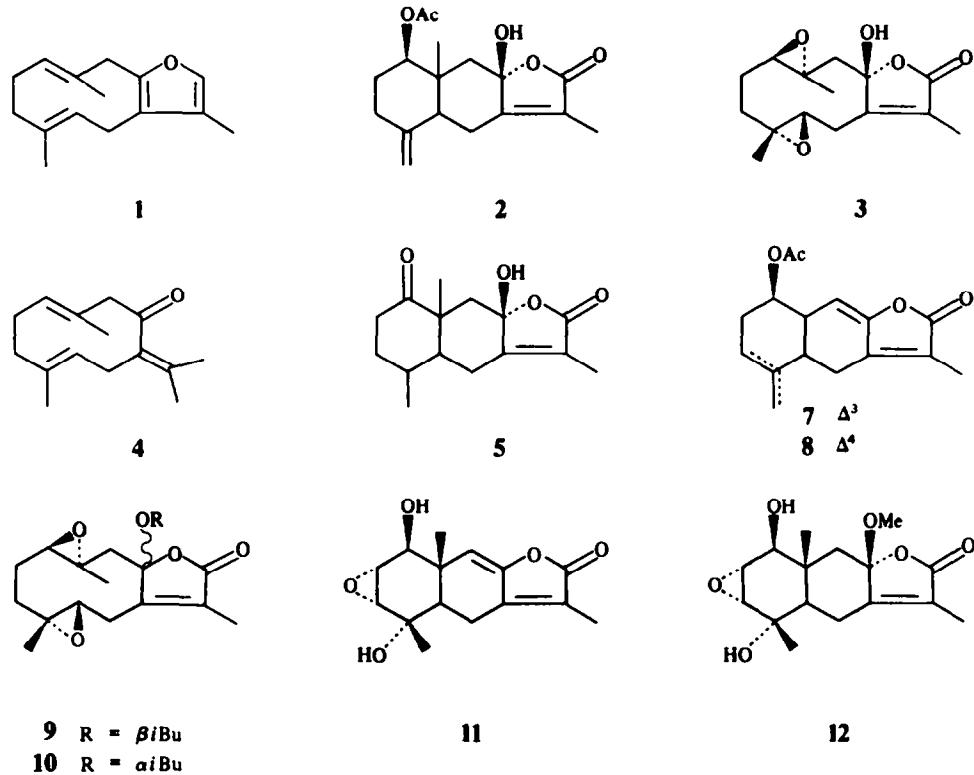
NEZHUN GÖREN and AYHAN ULUBELEN

Faculty of Pharmacy, University of Istanbul, Istanbul, Turkey

(Revised received 3 February 1987)

Key Word Index—*Smyrnium perfoliatum*; Umbelliferae; glechomanolides; eudesmanolides.

Abstract—In addition to five known sesquiterpenoids, six new compounds were isolated from *Smyrnium perfoliatum*. The new compounds were 1β -acetoxy-eudesma-3,7(11),8-trien-8,12-olide, 1β -acetoxyeudesma-4(15),7(11),8-trien-8,12-olide, $1\beta,10\alpha;4\alpha,5\beta$ -diepoxy- 8β -isobutoxy-glechomanolide, $1\beta,10\alpha;4\alpha,5\beta$ -diepoxy- 8α -isobutoxy-glechomanolide, $1\beta,4\alpha$ -dihydroxy- $2\alpha,3\alpha$ -epoxy-eudesma-7(11),8-dien-8,12-olide, $1\beta,4\alpha$ -dihydroxy- $2\alpha,3\alpha$ -epoxy- 8β -methoxy-eudesma-7(11)-en-8 $\alpha,12$ -olide.


INTRODUCTION

In addition to the known compounds furodiene (1) [1], 1β -acetoxy- 8β -hydroxy-eudesma-4(15),7(11),dien-8 $\alpha,12$ -olide (2), $1\beta,10\alpha;4\alpha,5\beta$ -diepoxy- 8β -hydroxy-glechomanolide (3) [2], germacron (4) [3], istanbulin A (5) [4] and stigmasterol (6) we have obtained six new sesquiterpenoids 1β -acetoxy-eudesma-3,7(11),8-trien-8,12-olide (7), 1β -acetoxy-eudesma-4(15),7(11),8-trien-8,12-olide (8), $1\beta,10\alpha;4\alpha,5\beta$ -diepoxy- 8β -isobutoxy-glechomanolide (9), $1\beta,10\alpha;4\alpha,5\beta$ -diepoxy- 8α -isobutoxy-glechomanolide (10)

$1\beta,4\alpha$ -dihydroxy- $2\alpha,3\alpha$ -epoxy-eudesma-7(11), 8-dien-8,12-olide (11) and $1\beta,4\alpha$ -dihydroxy- $2\alpha,3\alpha$ -epoxy- 8β -methoxy-eudesma-7(11)-en-8 $\alpha,12$ -olide (12) from the roots and the fruits of *Smyrnium perfoliatum* L.

RESULTS AND DISCUSSION

Ether-petrol extracts of the roots of *Smyrnium perfoliatum* yielded the known compounds 1, 3, 6 while 2-5

and the new compounds **7–12** were obtained from the fruits.

The high resolution mass spectrum of **7** indicated the molecular formula $C_{17}H_{20}O_4$, m/z 288.13501. The 1H NMR spectrum showed signals of an acetoxy methyl at δ 2.10, two olefinic methyls at 1.90 ($H-13, d$) and 1.72 ($H-15, br s$) and a tertiary methyl at 0.96 ($H-14, br s$). The lack of a lactone proton as well as of isolated methylene protons at C-9 and the presence of an olefinic singlet at δ 5.71 ($H-9$) indicated a double bond at $\Delta^{8(9)}$. The proton next to an acetyl group were at δ 4.78 (1H, dd , H-1) and 2.74 (1H, dd , H-6). A multiplet at δ 5.38 (H-3), together with the olefinic methyl (H-15), indicated another double bond at $\Delta^{3(4)}$ (Table 1). The stereochemistry at C-1 was decided by measuring the J values of H-1 ($J_{1a,2a} = 12$, $J_{1a,2c} = 5$ Hz) and by studying a Dreiding model. The high resolution mass spectrum of **8** indicated the molecular formula $C_{17}H_{20}O_4$, m/z 288.13501. The 1H NMR spectrum was similar to that of **7** (Table 1), although signals at δ 4.98 (1H, $br s$, H-15) and δ 4.71 (1H, $br s$, H-15') indicated the presence of an exocyclic methylene group at C-4, and the multiplet at δ 5.38 (H-3) and the olefinic methyl at δ 1.72 of **7** were lacking in **8**. The stereochemistry at C-1 was decided by measuring the J values of H-1 ($J_{1a,2a} = 11$, $J_{1a,2c} = 6.5$ Hz) and by studying a Dreiding model. The mass spectrum of **9** indicated the molecular formula $C_{19}H_{28}O_5$, m/z 336. Its structure was mainly determined by the 1H NMR spectrum. Apart from signals arising from the substituent at C-8, which was established as an isobutoxyl group [δ 3.96 (1H, dd), 3.87 (1H, dd), 1.96 (1H, $ddqq$), 0.93 (6H, d)], the spectrum of **9** was similar to that of **3** previously obtained from *Smyrnium cordifolium* [2], thus fixing the stereochemistry at C-8. 1H NMR data are given in Table 2.

The mass spectrum of **10** indicated a molecular formula $C_{19}H_{28}O_5$, m/z 336. The 1H NMR spectrum of **10** was similar to that of **9**, the differences consisting mainly in the chemical shifts of the methyl doublets of the isobutoxyl group (Table 2). Although **9** and **10** were epimers it was possible to separate them on TLC plates. The NOE experiments shown in Table 3, and inspection of Dreiding models, indicated that **9** and **10** were C-8 epimers.

The A rings of **11** and **12** were identical, the differences are only the presence of a methoxyl group at C-8 in **12** and a double bond at $\Delta^{8(9)}$ in **11**. The high resolution mass spectrum of **11**, m/z 278.1154, indicated the molecular

Table 1. 1H NMR spectral data of compounds **7–8** (400 MHz, $CDCl_3$)

	7	8
H-1	4.78 <i>dd</i>	4.87 <i>dd</i>
H-3	5.38 <i>m</i>	
H-6	2.74 <i>dd</i>	2.90 <i>dd</i>
H-9	5.71 <i>s</i>	5.80 <i>s</i>
H-13	1.90 <i>d</i>	1.92 <i>d</i>
H-14	0.96 <i>s br</i>	1.05 <i>s</i>
H-15		4.98 <i>s br</i>
H-15'	1.72 <i>s</i>	4.71 <i>s br</i>
OAc	2.10 <i>s</i>	2.11 <i>s</i>

J (Hz) **7**: 1,2 = 5; 1,2' = 12; 5,6 = 4; 6,6' = 17; 6,13 = 2. **8**: 1,2 = 6.5; 1,2' = 11; 5,6 = 4; 6,6' = 17; 6,13 = 2.

Table 2. 1H NMR spectral data of compounds **3**, **9**, **10** (400 MHz, $CDCl_3$)

	3	9	10
H-1	2.69 <i>dd</i>	2.83 <i>d br</i>	2.80 <i>d br</i>
H-2	1.50 <i>ddd</i>	2.07 <i>dd br</i>	2.05 <i>d br</i>
H-2'	2.15 <i>d br</i>	1.46 <i>m</i>	1.40 <i>ddd</i>
H-3	2.25 <i>ddd</i>	2.23 <i>ddd</i>	2.25 <i>ddd</i>
H-3'	1.27 <i>ddd</i>	1.28 <i>ddd</i>	1.30 <i>ddd</i>
H-5	2.67 <i>d</i>	2.69 <i>dd</i>	3.24 <i>dd</i>
H-6	2.55 <i>dd</i>	2.35 <i>dd br</i>	2.50 <i>dd</i>
H-6'	2.82 <i>d</i>	2.96 <i>d br</i>	2.92 <i>ddq</i>
H-9	3.02 <i>d</i>	3.15 <i>d</i>	3.01 <i>d</i>
H-9'	1.37 <i>d</i>	2.38 <i>d</i>	1.92 <i>d</i>
H-13	1.90 <i>s</i>	2.05 <i>s br</i>	1.90 <i>d</i>
H-14	1.50 <i>s</i>	1.40 <i>s</i>	1.26 <i>s</i>
H-15	1.35 <i>s</i>	1.19 <i>s</i>	1.13 <i>s</i>
OH	4.78 <i>s br</i>	—	—
OR*	—	3.96 <i>dd</i> 3.87 <i>dd</i> 1.96 <i>ddqq</i>	3.14 <i>dd H-1'</i> 2.89 <i>dd H-1'</i> 1.81 <i>ddqq H-2'</i> 0.89 <i>d H-3'</i> 0.93 <i>d</i>
			0.88 <i>d H-4'</i>

J (Hz) **3**: 1,2 = 11; 1,2' = 1.5; 2,2 = 14; 2,3 = 2'; 3 = 3; 2,3' = 13; 2,3' = 4; 5,6 = 8; 6,6' = 14; 9,9' = 14.5. **9**: 1,2 = 4; 1,2' = 1; 2,2' = 14; 3,3' = 13; 2,3 = 4.5; 2,3' = 3; 2',3 = 2; 5,6 = 5; 5,6' = 11; 6,6' = 14; 9,9' = 12; 1',1',1' = 10.5; 1',2',2' = 6.5; 2',3' = 2',4' = 7. **10**: 1,2 = 10; 1,2' = 1.5; 2,2' = 3,3' = 14; 2,3' = 2',3 = 3; 2',3' = 13; 5,6 = 5.5; 5,6' = 9; 6,6' = 15; 9,9' = 15; 1',1',1' = 8.5; 1',2',2' = 6.5; 2',3' = 2',4' = 7.

*R = $-\text{CH}_2-\text{CH}-(\text{Me})_2$

1' 2' 3',4'

Table 3. NOE experiments of compounds **9** and **10**

Irradiated protons	Effected protons in 9	Irradiated protons	Effected protons in 10
15	6, 14	15 (3')*	6, 14, (1,5)*
14	9, 15	14	9, 15
13 (2')*	6, (5)*	13 (9')*	6, (1)*
6	13, 15	6	13, 15
5	1, 3'	5	1, 3'
1	5, 9'	1	5, 9'

*Overlapped signals.

formula $C_{15}H_{18}O_5$ and that of **12**, m/z 310.142, indicated the molecular formula $C_{16}H_{22}O_6$. The 1H NMR spectrum for both compounds exhibited three methyl signals. The lack of a lactone proton as well as of isolated methylene protons and a singlet at δ 5.83 (H-9) indicated a double bond at $\Delta^{8(9)}$ for **11**, while in **12** the lack of the lactone proton and the presence of an isolated methylene at C-9 (δ 2.67 *d*, J = 13.5 Hz, H-9 and 1.25 *d*, J = 13.5 Hz, H-9'), as well as the presence of a methoxyl group at δ 3.14, indicated the methoxyl should be situated at C-8. Both compounds showed a broadened one proton singlet at δ 3.70 (for **11**) and δ 3.47 (for **12**) which indicated an

Table 4. ^1H NMR spectral data of compounds 11–12 (400 MHz, CDCl_3)

	11	12
H-1	3.70 s br	3.47 s br
H-2	3.38 d	3.31 d
H-3	3.23 d	3.19 d
H-5	1.61 dd	1.23 dd
H-6	2.98 dd	2.88 dd
H-6'	2.46 dd br	2.20 dd br
H-9		1.25 d
	5.83 s	
H-9'		2.67 d
H-13	1.90 d	1.85 s br
H-14	1.04 s	1.07 s
H-15	1.41 s	1.38 s
OMe	—	3.14 s
OH	—	2.49 s br

J (Hz) 11: 2,3 = 3.5; 5,6' = 4; 5,6 = 14; 6,6' = 17; 6,13 = 1.5. 12: 2,3 = 3.5; 5,6' = 4; 5,6 = 13.5; 6,6' = 15; 9,9' = 13.5.

Table 5. NOE experiments of compound 12

Irradiated protons	Effected protons
H-14	H-15, H-6 β , H-9 β , OMe, H-2 β
H-15	H-14, H-6 β , H-3 β
OH	H-2 β , H-3 β , H-1 α , H-5 α
H-5	H-1 α
H-3	H-15
H-1	H-9 α , H-5 α , H-2 β

oxygen function at C-1. Two, one-hydrogen doublets, with J = 3.5 Hz for each, at δ 3.38 and 3.23 (for 11) and δ 3.31 and 3.19 (for 12) indicated an epoxy group between C-2 and C-3. Since H-6, H-6' and H-5 were present as double doublets for both compounds the fifth oxygen function (for 11) and the sixth oxygen function (for 12) could only be situated at C-4 as hydroxyl groups (Table 4). The stereochemistry at C-1 was decided by comparing $W_{1/2}$ of H-1 (3 Hz) with the value of 3 Hz obtained from a Dreiding model for $J_{1a,2e}$. The stereochemistry at C-2 and C-3 was decided by measuring the J values of H-2 ($J_{2e,3e}$ = 3.5 Hz) and H-3 ($J_{3e,2e}$ = 3.5 Hz) and by studying Dreiding models. NOE experiments with 12 showed the configuration (Table 5).

EXPERIMENTAL

Plant material. *Smyrnium perfoliatum* L. was collected from the European section of Turkey (Mahya Dag-Kirklareli), a voucher

(ISTE 21008) is deposited in the Herbarium of the Faculty of Pharmacy, University of Istanbul. Dried and powdered roots of *S. perfoliatum* (3 kg) were extracted with Et_2O –petrol (1:2) and the extract was treated with MeOH to remove long chain saturated hydrocarbons. The residue was separated by CC (silica gel) and the fractions were further separated and/or purified on TLC plates to yield 5 mg 1, 250 mg 2 and 2.5 g 6. The dried and powdered fruits (2.4 kg) were extracted and treated in a similar way to yield 150 mg 2, 10 mg 3, 80 mg 4, 4 mg 5, 2.5 mg 7, 2.5 mg 8, 44 mg 9, 146 mg 10, 12 mg 11 and 2.5 mg 12. The spectral data for compounds 1–5 were given in refs [1–4].

1β -*Acetoxy-eudesma-3,7(11),8-trien-8,12-olide* (7). Amorphous. IR $\nu_{\text{max}}^{\text{CHCl}_3}$ cm $^{-1}$: 1760, 1740, 1650, 1235; ^1H NMR given in Table 1; MS m/z (rel. int.): 288, 13501 [M] $^+$ ($\text{C}_{17}\text{H}_{20}\text{O}_4$) (24), 245 [M – COMe] $^+$ (7), 228 [M – AcOH] $^+$ (79), 213 [228 – Me] $^+$ (100), 185 (30), 105 (20), 91 (28).

1β -*Acetoxy-eudesma-4(15),7(11),8-trien-8,12-olide* (8). Amorphous. IR $\nu_{\text{max}}^{\text{CHCl}_3}$ cm $^{-1}$: 1760, 1740, 1650, 1235; ^1H NMR given in Table 1; MS m/z (rel. int.): 288, 13501 [M] $^+$ ($\text{C}_{17}\text{H}_{20}\text{O}_4$) (24), 245 [M – COMe] $^+$ (8), 228 [M – AcOH] $^+$ (82), 213 [228 – Me] $^+$ (100), 185 (30), 105 (20), 91 (28), 57 (34).

$1\beta,10\alpha,4\alpha,5\beta$ -*Diepoxy-8 β -isobutoxy-glechomanolide* (9). Colourless crystals, mp 155°. IR $\nu_{\text{max}}^{\text{CHCl}_3}$ cm $^{-1}$: 1755, 1485, 1350, 1200, 1150; ^1H NMR given in Table 2; MS m/z (rel. int.): 336 [M] $^+$ ($\text{C}_{19}\text{H}_{28}\text{O}_5$) (0.1), 263 [M – OC $_4\text{H}_9$] $^+$ (3), 220 (27), 155 (22), 126 (38), 57 [C_4H_9] $^+$ (100).

$1\beta,10\alpha,4\alpha,5\beta$ -*Diepoxy-8 α -isobutoxy-glechomanolide* (10). Amorphous. IR $\nu_{\text{max}}^{\text{CHCl}_3}$ cm $^{-1}$: 1755, 1480, 1350, 1195, 1150; ^1H NMR given in Table 2; MS m/z (rel. int.): 336 [M] $^+$ ($\text{C}_{19}\text{H}_{28}\text{O}_5$) (0.1), 321 [M – Me] $^+$ (81), 263 [M – OC $_4\text{H}_9$] $^+$ (1), 220 (5), 193 (6), 155 (17), 126 (22), 57 [C_4H_9] $^+$ (100).

$1\beta,4\alpha$ -*Dihydroxy-2 α ,3 α -epoxy-eudesma-7(11),8-dien-8,12-olide* (11). Amorphous. IR $\nu_{\text{max}}^{\text{CHCl}_3}$ cm $^{-1}$: 3420, 1755, 1655, 1480, 1350, 1070; ^1H NMR given in Table 4; MS m/z (rel. int.): 278, 1154 [M] $^+$ ($\text{C}_{15}\text{H}_{18}\text{O}_5$) (33), 231 (18), 164 [$\text{C}_{10}\text{H}_{12}\text{O}_2$] $^+$ (72), 163 [$\text{C}_{10}\text{H}_{11}\text{O}_2$] $^+$ (100), [$\text{C}_3\text{H}_3\text{O}$] $^+$ (19).

$1\beta,4\alpha$ -*Dihydroxy-2 α ,3 α -epoxy-8 β -methoxy-eudesma-7(11)-en-8 α ,12-olide* (12). Amorphous. IR $\nu_{\text{max}}^{\text{CHCl}_3}$ cm $^{-1}$: 3555, 1760, 1605, 1480, 1350, 1170, 1080; ^1H NMR given in Table 4; MS m/z (rel. int.): 310, 142 [M] $^+$ ($\text{C}_{16}\text{H}_{22}\text{O}_6$) (61), 282 [M – CO] $^+$ (65), 251 [282 – OMe] $^+$ (25), 164 [$\text{C}_{10}\text{H}_{12}\text{O}_2$] $^+$ (10), 163 ($\text{C}_{10}\text{H}_{11}\text{O}_2$)* (19), 61 (100). $[\alpha]_D^{24}$ – 33.6° (589 nm), – 35.4° (578 nm), – 42.5° (546 nm), – 92.9° (435 nm), – 204.0 (365 nm).

Acknowledgements—We thank Dr J. Jakupovic (Org. Chem. Inst. Tech. Univ. Berlin) for ^1H NMR and mass spectra and for his help in structure elucidation.

REFERENCES

1. Hikino, H., Agatsuma, K. and Takemoto, T. (1968) *Tetrahedron Letters* 931.
2. Ulubelen, A., Gören, N. and Bohlmann, F. (1985) *Phytochemistry* 24, 1305.
3. Ohloff, G. and Hoffmann, E. G. (1961) *Z. Naturforsch.* 16, 298.
4. Ulubelen, A., Oksüz, S., Samek, Z. and Holub, M. (1971) *Tetrahedron Letters* 4455.